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ON A NEW PARTICULAR SOLUTION OF THE EQUATIONS OF MOTION OF 
A HEAVY SOLID IN A LIQUID* 

V.N. RUBANOVSKII 

The Kirchhoff-Clebsch equations of motion of a free heavy solid in a 
fluid are considered under Chaplygin conditions /l/. The precession 
motions of a solid are investigated in which the rotating part consists 
of two rotary motions, the directionofrotation of the first is constant 
in space, and the second is constant in the solid, the angle between the 
two being constant. Means for finding precession motions of the solid in 
fluid are indicated. A particular solution is given for the case when 
the angular velocity components of the rotary motions are equal and the 
direction of their rotation mutually perpendicular. This solution is 
similar to that of Grioli problem of the motion of a heavy solid with a 
single fixed point. The geometric interpretation of a solid in fluid, 
defined by that solution is given. 

1. Consider the motion of a free solid bounded by a simply connected surface in a homo- 
genous gravitational field of force, unbounded in all directions, in a homogeneous incompressible 
ideal fluid. The fluid performs irrotational motion, and is at rest at infinity. We will 
assume that there is a statically and dynamically balanced rotor in the solid that rotates 
at consant relative angular velocity about an axis permanently fixed to the solid. 

Let the weight of the fluid displaced by the solid be equal to the combined.weights of 
the solid and rotor. We denote by R,, Pi,Li (i= 1.2,s) the projections on the axes of coordi- 
nates 0z,.r2, permanently fixed to the solid of the vector R of the angular momentum of 
the system of gyrostat plus licjuid (impulse force /l-3/), by the vector P its momentum 
relative to the point 0 timpUlse couple /1--3/I, and by the vector ?. of the gyrostatic moment 
of the rotor. The kinetic energy of the system has the form /l-3/ 

T=-$ 1 (cI,~P,P~- b,,H,H? -m3,,P,::,j. ~<,==a,,. b,>=b,, 
_ 

i. .=1 
(1.1) 

where (liJ> btJ. C,I are constants defined fcr the particuiar system. The projections of u*, Qi 
(i = 1, 2, 3) on I‘ axes of the vectors of 'cbe translational angular velocity II and the 
instantaneous a.nnq;;lar velocity !2 cf the sclid are determined by the fornlulae 

u, = tiT uR,. Ol = irT’3Pi (L = 1. 2. 3). (1.2) 

AssUr.ing cqe in:rulse force R(R- = H- = const) to be directed along an ascending vertical 

line, WE have the foi ,lowrr.g eqnarions cf r.:cti cn of the syster; :1-Z/: 

dR, cjl - QJ3 - R,R: = il (123) (1.3) 
dp, 21 - Gi (I’, - L3) - 52, (P; - i.,) T u?R, - u,RZ = 

e2R3 - e3R2 (123) 

where e,, e?, eb are constant projecticns 0.: the z, axes of the radius vectcr drawn from the 
centre of mass of the volume bo;u?de- A by the outer surface of the solid to the centre of mass 
of the gyrostat. 

The inertial motion of the solid, bounded by a multiply connected surface, in an unbounded 
fluid, is alsc defined by (1.3) ./4/. 

2. We shall call the motion of a solid precessional, if its rotational part is composed 
of two rotary motions, the first of which is fixed in space and the second is fixed in the 
solid, and the angle between these directions is constant. 

We shall describe a method of determining the precessional motion of a solid in a fluid, 
when the components of the rotaq motion are constant. 

We denote by 7 the unit vector of the direction of the rotary motion fixed in space. 

We assume without loss of generality that the rotary motion whose direction is fixed in the 
solid takes place about the ra axis with the unit vector i,. The unit vector of the pulsed 
force R = Hr fixed in space is denoted by v. The vectors y and v satisfy the equations 
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dy/dt=y x 0, dvldt-v x fJ (2.1) 

3 = I, 0’ = 1, v-y = cos x = con& Y-i, = cos 8 = const. (2.2) 

Multiplying the first equation of (2.1) scalarly by i8 and taking into account the last 

of conditions (2.2), we obtain the relation is-(Y X Q)= 0. This implies that the vector R 

can be represented in the form 

R = cp'i, + cp’v, l+i = const, $ = const . (2.3) 

Substituting (2.3) into (2.1), we obtain the following equations for Y and V; 

Y ’ = e’(Y x id, v’=cF’(vxi:)+V(vxY). (2.4) 

Integrating the first of these equations, taking (2.2) into account, we obtain for the 
projections y1 of vector y on the z, axis the expressions 

Y1 = sin 8 sin p, y2 - sin 0 cos 9, ys = Co9 8, q = q’t + cp~. (2.5) 

To determine vector v that satisfies the second of equations (2.4) and relations (2.2), 
we use the equation 

v= coex$ ( COSOSiS%SiIl~ -)Y- sinxsinrp . 
s1n e s,ne la- ‘ins:z(P (vlxi8) (2.6) 

where * = w + +s and &, is an arbitrary constant. 
From (2.3), (2.5) and (2.6) and the equation R=Hv we have 

S2, = 9 sin e sin cp, R2 = *' sin e cos cp, Q, = +*COS 8 + r+' 

R, = H Ices x sin e sin g + sin x (cm e sin q sin r+7 - 
cos$ cos I$:)1 

(2.7) 

(2.8) 

R2 = H [cos x sin e co9 q- + sin x (COS 8 sin 9 ~0s p + 
cos $ sin q)l 

RI, = H (cos x cos 8 - sin K sin 0 sin $) . 

Having determined R and R, we obtain the vectors P and u from (1.2) and represent 
them in the tensor form 

P=A.O-C.R, U=C'.Q+B.R (2.9) 
A=~~Aij~!l*=u-l, C=IICijj/la~,-‘.,, B=jIB,,jjlJ~ 

b_cr.a-‘.c 

a = II ail III*, b = II bij II Is, c = II cij 111’ . 
From (2.9), the equation R =Hv. and (2.3) and (2.6), we obtain 

From this we obtain for Pi, a1 the formulae 

p, = (-4,&n m -I- A,,cos cp) @sin 8 + A,, (cp’ + I#’ cos e) - 
CllH Ices x sin 8 sin cp+(cos e sin cpsinq-cos cp cssg) sin xl- 
&H [sin x (cos 8 cos cp sin + + sin ~COS q) + 
cos x sin e co9 ~1 + C&I (sin x sin 8 sin + - cos % cos 0) 

(123) 

4 = (C&n cp + C,,cos 9) q’ sin 8 + Cal (cp’ + $COS e) + 
B,,H ices x sin 8 sin cp + (cos 8 sin m sin (li - cos rp cost+). 

*sin xl + B,,H [sin x (cos 0 cos cp sin I$ + 
sin cp COSV) + cos x sin 8 cos cpl + B,*H (COS x cos e - 
sin x sin 8 sin $) (123)’ 

(2.10) 

(2.11) 

where the symbol (123) indicates that two other formulae are obtained from this one by permut- 
ing the indices 1, 2, 3 of P,,ui, and the first index of the constants Ait, Pi,, CiJ- The 
prime on this Symbol indicates that in (2.11) for C,J the second index and not the first is to 
be changed according to permutation (123). 

Substituting (2.7), (2.8), (2.10) and (2.11) for &, Ri, PI, ut into the second group of 
(1.3) and stipulating that they are identically satisfied by F and q, we obtain the required 
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conditions for precessional motions of the solid in the fluid to exist. 

3. Let 
@ I= n/2, p’ = qci’ = corm, cp = I$? = ‘p-t + l&. 

In this case the conditions for precessional motions to exist have the form 

BilHsin x = 0, (B22 - B,,) Hsin x = 0 (i, j = 1,2,3; i +j) 

[(C,, -I- Cd T.’ + l/t (4B,, ~0s x - B,, sin x) HI Hsin x = 0 
](&a + Cm) m' -I- (B,,sin x + 2B,,cos x) HI H sin x = 0 

{(CS - C,,) T’ + [(Bm - B,,) cm x + 
VtBIS sin xl H} Hsin x = 0 

8Ad~‘* + I(&, + Cd sin x - 4 (Cl* + C,,) cos xl cp’ H + 
(B,z sin x - 2B,, cos x) H sin x = 0 

A+?'* - [(Cl, + G) sin x + UC,, + Cd cosxl cp'H + 
(B,,sin x cos x - B,,) H = 0 

(3.2) 

I(C,, + Cy2) cp' + '12 (2B,, cos x - B,, sin x) HI H sin x = 

e2 H sin x, [(Cl, f Czl) q’ f- 1/Z (4Bla cos x - 
BPS sinx) H]H sin%= - 2epHcosx- 2h2(p’ 

I(C,, -I- C,,) e’ - (B,,sin x - 2B,,cos x) HI Hsin x = 0 

Ad’ + IV,, + Cdsin x - (Cpg + C,) cos xl cp'H - 
VP [B,, sin 2x + B,, (2 - 3 sin* x)1 H = 0 

AZ&" -k [(C,, + CS1) siu x - (C,, T C,,) cos xl q'H + 
1,4 l2B,,sin 2x + B,, (4 - 7sin2 x)] H = --2&m'. 

2A,,q” - [(C,, + C,,) cos % - ‘i, (C,, + C,) sin xl +'H - 
I!4 IB,,sin x - 2BZ9 cos xl H?sin x = e,H sin x 

2A,2q'Z - 12 (Cl, + Cz,) cos x - (CtS + C,,) sin x] T'H - 
IB,, (2 - 3sin* x) - B2&n x cos Y.] Hz = -_ed sin x 

(3.3) 

{CC r3 i- C,,)~'+ I(B,,-BJ3) sin x + 2B,a cos x] H) Hsin x=0 
i(C,, + C,,) cc' + (B2? - B,,) H sin xl H sin x = 0 

((2C 3., i C,, - C,J T’ + [(Bm - B,,) co-+ Y, - 
1!z B13 sin xl H) H sin x = 2e,H cos y. + 2&v 

(A?? - An) q" - ](C,, T C,,) sin x $ 2 (CS2 - C,,) cos XI ~'HA 
lip l(B,, - B2?)(2 - 3 sin* x) - B,, sjn 2x1 H' r e,Hsinr. 

i-41, - A22 - A,,) q" -v I(C,, + Cp2 - C,,) cos x + 3,',(C,s 2 
C,,)sin xl q'H -+ 'I( [(BS3 - B,,)sin ): - 2B,,cos xl H2sin x= 
H (el sin y. 7 ey cos y.) - i.,q’ 

(A,, - A,, i A,,) 'I" - [(C,, -- c,, - C,,) cos x - 8 4 (C,, - 
C3,) sin xl q’H i- I.* (BS5 - B,,) H2 sin2 x = -e,H cos y. - 

&?(I’ 
A,,q” - 12C Z,sin x $ (Cl3 T Cal) cos zl q'H + 1 1 ICB,, - 

Bll) sin 2x 7 2BIs (2 - ~COS'X)] Hz = -e,H sin x 
A13q." _t i2 (C,l - CS3) sin x A (C,, + C,,) cos XI q’H T 

[(B,, - B,,) sin x cos x T ‘:,B,, (4 - 5 sin? x)] Hz = 
--e,H sin x - 2&q' 

A,sg” + i2C,,sin y. - (CIS T C3J cos xl q’H - 
I,: [(B,, - B2?) sin 2~ + B,, (1 - 3 co:? x)] H” = --e&sin x 

(3.4) 

From (3.2; ‘r‘e successively have 

B12 = B,, = IJ’?~ = 0, B,, = B,, (3.5) 

C,? i C?, = 0, C,, - C,, = 0. C,, = Cz?. Al? = AZ3 = 0 
P? =o. k, =o. 

When conditions (3.5: are satisfied equations (3.3) are identically satisfied. 
Let us now consider (3.4), taking (3.5) into account. Adding the fifth and sixth equa- 

tions term by term and taking into consideration the first and fourth, we obtain 

er = 0. (3.6) 

The last two equations are compatible only when the condition 

C,l = 0 (3.7) 

is satisfied. When conditions (3.6) and (3.7) are satisfied, the seventh equation, which is 
the corollary of the first, third and erghth, and the first two equations are the same. Now 
when conditions (3.S)-(3.7: are satisfied, (3.4) reduces to the following equations: 

(3.1) 
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(3.8) 

(3.9) 

(3.10) 

From (3.8) and (3.10) we have 

((A&' + 1,)' + (Aaa(~' + &)ll A,,$” = p* (A,,@ + L,)’ (3.11) 

AL@ i J.1 tgx= A,q.+ , H=& 
0 

(3.12) 

where p = e&f is the product of themass of the fluid displaced by the solid and the distance 
from the centre of mass of the gyrostat to the centre of gravity of the volume bounded by 
the outer surface of the solid. 

From (3.9) we have 

(CM + CB,)* = (A,, - A,,)(B,s - B,,) 

CF.= a1 V&3+ &I) 
&&--A,,) * 

Substituting (3.14) into (3.11) we obtain 

IC,, (AZ* -A,,) -t A,, (C,s + C,,)l' Ca: (AX - A,# p* = 
UCSB (AS - An) + Au (C,, + Csl)Iz A,* -!- 
[Ass (C,J + Cd A, i Css (At? - A,,) VI AM* (C,, -!- Cs,h* . 

When conditions (3.1)) (3.5)-(3.7) are satisfied, formulae (Z.S), (2.10), (2.7) 
and (2.5) take the form 

R, = H (cos xsin (r - sin x cos* cp), R3 = -H sin x sin c~’ 

Rc = H (cos y. + sin x sin (r) cos q, v = cp’t +- q. 
J’, = (-4,~ -I- A,, sin (i) q' - [Cm (sin x sin cp +- co5 x) cos cp - 
C,,sin x sin ~1 H 

P2 = A,, q’ cos q 7 IC,? (cos x sin q - sin xcos2 q) + 
Cp3 sin x sin IJ] H 

P, = (.A33 + A,S~in (r)~' j IC,, (sin x costs - co5 x sin r~) i 
. 

C,, (sin z slnv + co> x)cos q T Cs3 sin x sin ~1 H 

Q, = q’sin q, Qz = (i' cos q. Q3 = (I' 

a1 = (C,, - c,,cos u) (i ’ + B,,H (COP y. sin (I - sinx cot* q) 
Up = (-c,, -J- C,,~in (0 q’ - B,,H (sin x sin q - co.c x) cos v 

U3 = (C,, -!- C,,sin y T C,, co: ‘I) v’ - B,Jfsin x sin v 

fl = sin q, so = cos v. y3 = 0. 

(3.13) 

(3.14) 

(3.15) 

(2.11) 

(3.16) 

(3.17) 

(3.16) 

The expression for the system kinetic energy, taking (l.l), (1.2), (2.9), and (3.5) into 
account can be represented in the form /2, 5/ 

Let us restate the results obtained so far. If the kinetic energy of the system of 
gyrostat and fluid has the form ( 3.19) and conditions (3.5) and (3.6) are satisfied, equations 
(1.3) have the solution (3.16), (3.17) in which the constant q' is determined by (3.11), the 
constants x and H are calculated using formulae (3.12), and the parameters 
A,,, A,,, 

C,J, C,,, CII~, A,,, 
AI,,B,,,B~~,h,,A.~,p are connected by the relations (3.13) and (3.15). This solution 

defines the motion of the solid whose rotary part is in regular precession about an axis 
fixed in space. The projections of the unit vector 0 of that axis are determined by (3.181, 
which makes an angle x with the ascending vertical line, and the spin occurs about the axis 
which is parallel to the zQ axis and orthogonal to the vector y. 

When hl = Cl* = CpJ = C,, = C,, - C,, = A,, - A,, = B,, = B,, = 0 this solution becomes the 
Kharlamova solution /6/ for the problem of a heavy gyrostat with a single fixed point and, 
when h, = 0, the last one becomes the Grioli solution /7/. 

Remark. In the solution indicated here, we can, without loss of generality, put B,,= 0. 
Indeed, (1.3) do not change, if in (1.1) the coefficients L,i - b are substituted for b,i (i = 
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1, 2. 3). when the constants B,,, by virtue of (2.9),take the value Bii- b. Setting b= Bii. 

we obtain the required result. Mechanically this means that in the motion of the solid con- 
sidered here, the constant translational motion with velocity U= 1R in the direction of the 
vertical line is rejected. 

4. We shall now give a full geometric interpretation of the motion of the solid in the 
fluid, as defined by the solution indicated for B,, = 0. The use of the apparatus of the 
cross-product calculus is convenient for this /8/. 

We denote by V the kinematic helix defined by the formula (3.171, and represent it in 
the dual form V = $2 _t oU, where o(o* = 0) is the Clifford number. For the dual modulus /8/ 

V of the helix Vwe have the expression li = (r' f/z (1 + '/,CJSO). 

Let r = y $ 0~" be the unit helix of the straight line fixed in space and having the 
direction of the vector 11. For r we have the equation 

r'+vxr=o, l-*=1. 

Separating here the moment part, for the determination of the vector v" with projection 

YlOl YPO, %O / we obtain the equation 

v'"+Q x y"+u x y=o, v.v"=O. 

Taking into account (3.17) and (3.18),we obtain 

Y10 = 'i, IC,, t p, - 4C,,cos (i + (C,, - pl) sin 2q + (CS, + (4.1) 
p,) cos 2ql 

where pl, pz are arbitrary constants. 
We denote by A = a +-ma' the dual angle /0/ between the axes of the helices V and r, 

where a is the angle between the vectors R and 7, and a' is the distance between the axes 

of the helices V and r. Let us compose the scalar product of the helices v and I‘ 

Y.r=l*CO..-I. \'.r=R.yT(L)(R.I'~-U.y) (4.1) 

1. co5.i = q*]'Z (1 - 1!2CS30)(~~~ a - uac Fin a). 

Separating in (4.21 the principal and moment parts, we have for the determination of a 
and a0 tie equations 

Q,yz~'lrZ TV>?, Q.+cCT u.r=(i'j/~('1ZC31Co.C1---~J.isin-1) 

or taking (Fi", (3.18:, (3.Cj and (4.1) intc account 

x+* Qc= - -& - (( ‘31 - !i~)+ill(~ --(C?3- ;~?)co>c/]. 

Setting PI = --c,, - and P2 = c*, we finally obtain 

? z i 4.T. clc = -1 ,c,, . 

Let us take any point M of the sclid defined by the radius vector r (.T~. 
by E = i, - wi,. i,' = r x i, the unit helix of the straight line which passes 
point M and is parallel to the zs axis. We further denote by B = p - &$' 

between the axes of the helicies I'and E, and compose the scalar product of 
and E 

V*E=VcosB, V.E=R,isTo(n.i*‘+u.4) 

V cos B = 9’ 1’3 (1 + ‘/.J,,o) (co5 b - @ sin fi) 

(4.3) 

Lf* 13) and denote 
through the 
the dual angle 
the helices V 

(4.4) 

Separating in (4.4) the principal and the moment parts, we obtain for the determination 
of p and p the equations 

Q-i*= (F'~~2cos~, Q. ia" T u. ia = cp’fl(‘/#2** cos fJ - p sin p) 

or taking (3.17) and (3.91 into account 

'F' = 'F' p-2 cos 8, cc' IC33 + (zz - C,,) sin T - (zl - 

C,,) COS ul = a' (v2c33 - B') 

From this we have 
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p = l/,x, B” = -lfl ICss + (zp - C,,) sin 'p - (zI - I&) cos cpl . 

Setting 2, = C,s, z2 - CI,, we finally obtain 

B = =/,n, B" = --'l*Cs, . (4.5) 

By virtue of (4.2) and (4.4) the helix V can be represented in the form of the geometric 
sum of two helices 

V = V (r cos A + E cos B) (4.6) 

the dual moduli Vcor A and Vcos B of which are constant. 
From (4.6), (4.3), and (4.5) we see that the motion of such a solid consists of two 

helical motions with unit helices r and E and constant dual moduli. The axes of these two 
helices are orthogonal to each other and the distance between the two is constant and equal 
to C3a. The helix V is at constant dual angles tothehelices r and E, hence, when the 
solid moves, the axis of the helix V describes in space and in the solid the same one-sheet 
hyperboloids,whose axes of symmetry are the axes of the helices I' and E. 

We denote by L and N the points of intersection of the axis of helix r X E with the 
axes of the helices r and E, respectively. The coordinates of the point N are z1 = CS1, 

z* = c31. 23 = cl*. We introduce the fixed system of coordinates LY,Y*Yr whose ys axis coincides 
with theaxis of the helix T. The one-sheet hyperboloids are defined by the equations. 

YIP f Y,l = ':,C,,r -t- Yr2 (4.7) 

(51 - Cd -r (22 - Ca,? = ‘l,C$ i- (29 - Cd. (4.8) 

The motion of a solid in a liquid defined by the solution (3.16), (3.17) may be represented 
as the result of rolling a one-sheet hyperboloid (4.8) fixed to the solid over an identical 
fixed hyperboloid (4.7) around a common generatrix at a constant angular velocity 
and its sliding along that generatrix atconstantvelocity If* I?%,,~'. 

cp.l/Z, 

As C1,-to. the hyperboloids (4.7) and (4.8) in the limit transfer into their own 
asymptotic cones with a common vertex at the point fi(C,,, C,,,C,,). The motion of the solid 
occurs so that the cone attached to it rolls over the fixed cone at constant angular velocity 

q' j/2. 

A similar geometric representation of the motion occurs in another limit case, when the 
density of the liquid approaches zero. The problem of the motion of a heavy solid in a fluid 
then becomes the problem of the motion of a gyrosat with a single fixed point, and its solution 
reduces to Kharlamova's (&i # O), or Grioli's (& = 0). 
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